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LEARNING A COLOR ALGORITHM FROM EXAMPLES

A. Hurlbert and T. Poggio’

ABSTRACT:

3. We show that a color algorithm capable of separating illumination from
reflectance in a Mondrian world can be learned from a set of examples.
The learned algorithm is equivalent to filtering the image data — in which
reflectance and illumination are intermixed — through a center-surround re-
ceptive field in individual chromatic channels. The operation resembles the
“retinex” algorithm recently proposed by Edwin Land. This result is a spe-
cific instance of our earlier result that a standard regularization algorithm
can be learned from examples. It illustrates that the natural constraints
needed to solve a problem in inverse optics can be extracted directly from
a sufficient set of input data and the corresponding solutions. The learning
procedure has been implemented as a parallel algorithm on the Connection
Machine System. _
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Computational vision has derived effective solutions to early vision prob- ot
lems such as edge detection, stereopsis and structure from motion by exploit-
ing general constraints on the imaging process and the natural world. An
important question is: how does a visual system learn the algorithms it uses?
Can they — and the underlying natural constraints — be learned automatically
from sets of examples? We have explored these questions for the computa-
tional problem of color vision, and implemented a parallel learning procedure

on the Connection Machine System.

Color constancy points to a difficult computation underlying human
color vision. We do not merely discriminate between different wavelengths
of light; we assign roughly constant colors to objects even tl.ough the inte -
sity signals they scnd to our e -es change as the illui inat n varie acrc s
space and chromatic spectrum. Perfect color constar 'y w.wuld resi It frc n
a computation that extracts the invariaut spectral ret ~ctai.ce prop«rties of @
surfaces from the image intensity signal, in which reflectance and ililumina-
tion are mixed. The fact that the colors we see are not exactly invariant
suggests that our visual system performs a computation with a similar goal,
but less exact results. The computation is typical of the difficult problems of
inverse optics, in which the information supplied by a two-dimensional image
is insufficient by itself to solve for a unique three-dimensional scene. Natural

constraints must be found and applied to the problem in order to solve it.

“Retinex” lightness algorithms, pionecered by Land (Land, 1959. 1985,
1986; Land and McCann. 1971) and explored by others (Horn, 1974; Blake.
1985; Hurlbert, 1986) illustrate one successful approach to the computation.
The retinex algorithms assume that the visnal system performs the same

computation in cach of three independent chromatic channels. The algo-

rithms further assume that in each channel, the image intensity signal. or S
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N @ more precisely, the image irradiance, s', is proportional to the product of
o
b the illumination intensity e’ and the surface spectral reflectance =’ in that 1
:: channel:
L)
)
‘
"
&
e !
s'(z,y) =r'(z,y)e'(z, y). (1)
]
4 This form of the intensity equation makes the implicit assumption that the
)
.’ . .
X irradiance s’ has no specular components and that the color channels have
?i
been chosen appropriately. !

. .
4
B, Retinex algorithms seek to solve Equation (1) for lightness, which is an
; approximation to 7'(z, y), in each channel. The resulting triplet of lightnesses
‘ labels a constant color in color space. To make a solution possible, retinex
2 . . . . . . .
i algorithms restrict their domain to a world of Mondrians, two-dimensional
!
j‘ su faces covered with satches of random colors (sce Figure 1). The algo-
R

@ ritms then make the . xplicit issumptions tht (1) »/(z,y) is uniforin within
.‘ pi ches >ut has harp discontinuitics at edge: between patches and that (2)
&
! e'(z,y) varies sn.onthly across the Mondrian.
R Most retinex algorithms first take the logarithm of both sides of Equa-
E' tion (1), converting it to a sum:
o
‘
%

s(z,y) = r(x,y) +e(z,y), (2)
?},
) where s = log s',r =log 7" and € = log ¢'. The two assumptions are “"’ ‘
. then exploited to break down the sum into its two components. : a
$a ]
= The most recent retinex algorithm (Land. 193G; cmploys an operator i
W R
that divides the image irradiance of Equation (1) at each location by a .
¢ ——ema
o weighted average of the irradiance at all locations in a large surround. The
o S
::‘ @ 1For a detailed derivation of the intensity equation, sce Appendix 1. -~
o ,
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4
Figure 1. A Mondrian under an illumination gradient, generated by adding together p
two 320x320 images: one is the (log) reflectance image, an array of rectangles q

each with a different, uniform grey-level (see Figure 2(a)); the other is the (log)
illumination image, in which the pixel values increase linearly in the same way
across each row.

log of the operator’s result is called lightness. The triplets calculated by
the algorithm fall close to the colors humans see when viewing a Mondrian
under illuminants with strong spatial gradients. The form of this operator is
similar to that derived in our earlier formal analysis of the lightness problem
(sce Hurlbert, 1986). The main difference between the two is that the ana-
Iytically derived operator takes the log of irradiance before averaging, and so
is linear in the logs, whereas Land’s algorithin averages before taking the log,
and so is not lincar in the logs. As diseussed below, the numerical difference

between the two results i small.

We set out to see whether a simple algorithm could learn from examples

how to extract reflectance from image irradiance. and whether what it would ’&’
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,3?: Q‘_i; learn would resemble one of the above algorithms. The examples we use are
.'\‘:"' N pairs of images: an input image of a Mondrian under illumination that varies
‘.’ smoothly across space and an output array that displays the reflectance of the
L
\f:‘ Mondrian separately from the illumination. We then synthesize an operator
fg from the examples by finding the linear estimator that best maps the input
’i: into its two output components, using optimal linear estimation techniques.
,:: For computational convenience we train the operator on one-dimensional
":f: vectors that represent horizontal scan lines across the Mondrian images (see
W, Figure 2). We generate many different input vectors s by addiag together
*‘:‘: different randomn r and e vectors. according to Equation (2). Each vector r
::: represents a pattern of step changes across space, corresponding to one row
“ of he o tput refl~ctar ~e image (see Figure 3a). Each vector € represents a
;:: su hoth radient .«cros space with a random offset and slope. corresponding
N . to one 1ow of tl - outHut illuininat on image. (In our implementation, we
:‘ @ aj pended 1 to e to create an output vector tuwice as long as the input.) We
: then arrange the “training vectors” s and r as the columns of two matrices
) S and R, respectively. Qur goal is then to compute the optimal solution L
of

; d

'

LS =R, (3)
H ’

g where L is a linear operator represented as a matrix.

.‘-:‘: It is well known that the solution of this equation that is optimal in the !
;% least squares sense is

s

i L=RS*, (4)
R\

‘: where St is the Moore-Penrose pseudoinverse (see, for example, Albert
o ;"" 1972). We compute L using the technigue of regularizing the pseudoinverse to
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Figure 2. (a) and (b) A pair of one-dimensional examples like those used to train the
algorithm. (a) shows the input data, which is a random Mondrian reflectance pat-
tern superimposed on a linear illumination gradient with a random slope and offset.
Each example can be thought of as a horizontal scan line across a Mondrian such
as the one in Figure 1 (which was generated by stacking similar one-dimensional
examples). Each example, 320 pixels in length, has a different reflectance pattern
and a different linear illumination gradient. (b) shows the corresponding output
solution, in which the illumination and the reflectance have heen separated and
concatenated. We used 1500 such pairs of input-output examples to train the op-
erator shown in Figure 4. (¢) shows the result obtained by the trained operator
when it acts on the input data (a), not part of the training set. 1t should be com-
pared with (b). This result is fairly tvpical: in some cases the prediction is even

better. in others it is worse.
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obviate numerical st bility problems (see Appendix 3). The number of exam-
ples we use is significantly larger than the number of elements in each vector
in S, in order to overconstrain the problem. Once L is computed it is tested
on new scan lines, generated in the same way. The pseudoinverse may also
be computed by recursive techniques which improve its form as more data
become available (see Appendix 3). The latter procedure, although equiva-

lent to our “one-shot” computing technique, may seem intuitively more like

learning,

We find that the trained operator L, given a new s as input, recovers
a good approximation to the correct output vectors r and e. Operating
on a two-dimensional Mondrian, generated by stacking appropriately many
one-dimensional s vectors, L also yields a satisfactory approximation to the

correct output image (see Figure 3b).

It seems that our scheme has successfully learned an algorithm that per-
forms the color computation correctly in a Mondrian world. What algorithm
has been learned? What is its relationship to the filters described above?
To answer these questions we examine the structure of the matrix L. We
expect that because the operator should perforr: e same action on cach
point in the image, i.e. that it should be space-invariant, the central part
of L should be a convolution matrix. in which each row is the same as the
row above but displaced by one element to the right. In the peripheral parts
of the matrix, this form will be corrupted by boundary effects. Inspection
of the matrix and appropriate averaging of the relevant rows (see Figure 4)
confirm these expectations. Like Land’s psychophysically tested filter, it has
a narrow positive peak and a broad. shallow. negative surround (sce Figure
4) that extends beyond the range we can observe. but not over the entire

image.
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(b)

Figure 3. {a) The (log) reflectance image that is one component of the Mondrian

of Figure 1. This image represents the Mondrian of Figure 1 under uniform illumi-
nation. (b} The (log) reflectance image that the trained operator produces when
it acts on the Mondrian of Figure 1. The operator has been trained on a set of
one-dimensional examples different from those used to generate the Mondrian of

Figure 1.

Ounr algorithm is not exactly identical with Land’s: the filter of Figure

4 subtracts from the value at each point the average value of the logs at

all poiuts i the field. rather than the log of the average values. As meu-
tioned above, the difference hetween the outputs of the two filters 1s sinall in
tmost cases, and both agree well with psychophysical resnlrs (Land, personal
comnmunication).  We have explicitly compared the performanece of Land's
~cheme on the Mondrian of Figure T with o selicme equavalont to onr learmed
aleorithnn dfilterine the loe of the muaee through o filter Tike that Shown i

Fiovwe 3o The resalting artavs approximat e the corpprect onvpot < equalls we !l

- N

avid are very sinelar to each other,
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Figure 4. The learned filter, which extracts reflectance from a Mondrian image
under a linear illumination gradient. The operator that is learned is a matrix that
acts on one-dimensicnal vectors. Assuming that the operator is space invariant
when boundary effects can be ignored. we estimate the shape of the corresponding
filter by summating the central rows of the matrix, shifting them appropriately.
The one-dimensional “receptive field” that results has a sharp positive peak and a
shallow surround that extends beyond the range we carn: estimate reliably, which is
the range we show here. The filter shown liere was learned trom a set of examples
with linear illumination gradients (see Figure 2). When logarithmic illutination
gradients are used, a qualitatively similar receptive field is obtained. In a scparate
experiment we used a training set of one-dimensional Mondrians with either lin-
ear illumination gradients or slowly varying sinusoidal illumination with random

wavelength, phase and amplitude. The resnlting filter is shown in the inset. The
inhibitory surround clearly decays back to zero.
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To investigate the way in which the shape of the learned operator varies @
with the type of illumination gradient on which it is trained, we constructed.
a second set of examples. In addition to vectors with random linear illumi-
nation gradients, this set contained an equal number of vectors with random
sinusoidally varying illumination components. The operator trained. on this
mixture of illumination types differs from the operator trained on strictly
linear ones in the shape of its surround. Whereas the latter has a broad
negative surround that remains virtually constant throughout its extent, the
new operator’'s surround (see Figure 4b) bhas a smaller extent and returns

smoothly to zero from its peak negative valuc in its center.

The difference between the two operators illustrates au interesting fea-
ture of the learning algorithm: it adapts to its environment. The results
imply that the optimal operator for images with strictly linear illumination
gradients is one whose surround takes a ccnstant averag: over a range smalli r #
than the entire image. On the other har.d, the surrou «d of the optinal o -
erator for images with smoothly varying illumination -adic.its is a lhw-pa s

filter that separates the illumination frow the sharply-varying reflectance.

Our learning procedure is motivated by our previous observation (Poggio
and Hurlbert, 1984; see also Poggio et al., 1985b) that standard regulariza-
tion algorithms in early vision define linear mappings between input and
output and therefore can be learned associatively under certain conditions
(see Appendix 3). Our algorithm synthesizes the optimal linear operator L
that maps as closely as possible. in the least squares sense, the image irradi-

ance into its reflectance and illumination components for this class of images

and illumination gradients. The technique of optimal linear estimation that

it uses is closely related to optimal Baycesian estimation (see Albert, 1972

and Appendix 4). ::ﬂ
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Figure 5. In a separate experiment we trained the operator on a set of 1500 one-
dimensional Mondrians with either linear gradients of illumination or sinusoidally
varying illumination with random wavelengths between 0.5 and 1.5 times the length
of the pattern, and random phases and amplitudes. We show here how the operator
performs on a new input pattern with a linear illuminaiion gradient (left) and on a
pattern with a sinusoidal illumination (right). As in Figure 2, (a) shows the input
data. (b) shows the corresponding output solution, in which the illumination and
the reflectance have been separated and concatenated. (. ) shows the result the
trained operator yields when it acts on the input data (a), not part of the training
set. It should be compared with (b). The filter corresponding to this operator is

shown in the inset of Figure 1.

The learned L acts on new inpnt images to vi- Id good approximations

- e -~ ‘,,- w nv RN nb. .'
e e e oy e D S e D R e Rtk



12

to the correct output images. Note that the result of applying the matrix L
to a two-dimensional Mondrian image (see Figure 3) is not as good as the
one-dimensional examples suggest. The reason is that the matrix L has been
learned from one-dimensional examples, and in the case of Figure 3 it has
been applied to each row of the Mondrian independently. Small errors in
offsets and scaling factors for each row that would only slightly affect the
one-dimensional result become more obvious as they vary from row to row

in the two-dimensional case.

Training of the operator on two-dimensional examples is possible, but
computationally very expensive if done in the same way. The present com-
puter simulations require several hours when run on standard serial com-
puters (up to 20 hours on a Symbolics 3640 for 512x512 images). The twc-
dimensional case will need mucii more tilne. We expec' that it will e fea: -
ble only on the latest version of the Coni cction Machi e (t] » 65K-p: ocess r
CM-2 with floating point hardware) of Tl inking Machi es C »rporaticn. O ¢
one-dimensional learning scheme runs orders of magnitude faster on a CM!-
1 Connection Machine System with 16K-processors. It is possible to use
much more efficient methods of computing the pseudoinverse and especially

approximations to it (see for example Albert, 1972 and Kohonen, 1977).

The calculation of a regularized pscudoinverse may also be implemented
by parallel networks of simple processors or by analog networks that bear
some resemblance to biological systems. In particular, it could be computed
by so-called “neural” networks using a gradient descent method (also called
back-propagation in recent papers, see Rumelhart et al., 1986) and linear
units. Since the pseudoinverse is the best linear approximation in the L;

norm, gradient descent minimizing the square error between the actual out-

put and desired output of a fully connected linear network is guaranteed to




- v a4 ——_m—w

. 13

Y 2;) converge, albeit slowly. Thus gradient descent in weight space would give the
same result we obtain, the global minimum. In terms of a network of linear
units, the training scheme we have run, using one-dimensional Mondrians
512 pixels long, corresponds to learning the equivalent of up to about half a

million weights.

The significance of our result lies not so much in the specific estimation
, technique we used, but in the form of the filter we obtain. It is qualitatively
the same as that which results from the direct application of regularization
methods exploiting the spatial constraints on reflectance and illumination
described above (see Table 1 in Poggio et al., 1985a; Poggio and staff, 1985b;
Appendix 2). The Fourier transform of the filter of Figure 4 is approxi-
y m stely & bandp:ss filter that cuts out low frequencies duc to slow gradients
of illumination and preserves interinediate frequencies due to step changes

.
” in reflectance. The large “inhibitory” surround also provides normalization

| to average grey in the field (sce Hurlbert, 1986).

We do not think that our results mean that color constancy may be
. learned during a critical period by biological organisms. It scems more rea-
sonable to consider them simply as a demonstr=ion on a toy world that
evolution may recover and exploit natural constraints hidden in the physics
of the world. The shape of the filter in Figure 4 is suggestive of the “non-

classical” receptive fields that have been found in V4, a cortical area im-

plicated in mechanisms underlying color constancy {Desimone et. al., 1985:

Wild et al., 1985; Zeki. 1983a.b).

Finally, it is important to stress that the general solution of the problem
of color constancy requires much more work: real images are noisy, objects

P are three-dimensional, and there are shading, shadows, and specularities. We
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% are presently extending the simple learning technique described here in order
b

. to deal with the full complexity of real scenes.
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Appendix 1

The Intensity Equation

This appendix illustrates the transformation of the photoreceptor activ-
ity necessary in order to decompose the intensity cquation into a sum of two
components representing the surface reflectance and the source illumination

intensity.

In most natural scenes, the light reflected from objects includes both
diffuse and specular components. To simplify the intensity equation, we
assume that all reflection is Lambertian, or that there are no specularities. In
this case. the light reflected by a surface is solely the product of its spectral
reflectance and the illumination intensity that falls on it. The amount of
reflected light that reaches the eye further depends on the angles between the
illumination source, the reflecting surface, and the eye, and the response of
th - eye 10 the light depends on the : pectral sensitivity of its photoreceptors.

We may therefore write the intensity signal registered by the eye as:

7

s¥(r) = Iog/(z"()\)r"(/\..r)("'(,\..r)tl,\. (A41.1)

where v labels the spectral type of the photoreceptor (v = 1....4 for humans,
connting 3 cone types and 1 rod type). a¥(A) is the spectral sensitivity of
the vth-type photoreceptor and <'(r) its activity. »'(X,r) is the surface
spectral reflectance and o'(A, r) the effective irradiance. We group together

the geometrie factors influencing the intensity signal by defining the effective

irradiance as the ambient illumination modified by the orientation, shape,
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i:g: and location of the reflecting surface. The effective irradiance is the intensity :a
5E
’_ that the surface would reflect if it were white, that is, if r'(\,z) = 1.
'k
e
:""_- Equation Al.1 is not separable into a product of reflectance and illumi-
N .
3 nation components in a single color channel. To make it separable, we must
"%
) make a transformation to new color channels that are combinations of the
D) . .
5 ‘::j photoreceptor activities. \We first choose basis functions p*(A) and ¢*()) such
A :“y
N that for most naturally-occurring illuminants and surface reflectances
)
| © ! L]
W . ry
40 e 0)m ) PN (2)
; 2 ' (A1.2)
o r(hz) =Y g (W)
a i
Lo . . . . . ..
o The basis transformation (for a review of the origins of this idea see
Maloney, 1985; see also Buchsbaum, 1980 and Yuille, 1984) leads to the
e following equation
>
)
Ty
a3 ' - ‘-
5::: s¥x) =T e (x)r (), (A1.3),
¥, .
) . where the tensor T is defined as
x":‘
o
\":?.‘
o TV = [ dAa*(\)p'(A)g’(A
S L,) a P )(1 ( )*
‘” .. .
.r:.: whererr = 1...4andi.j = 1,..N, the p's and the ¢’s are the basis functions
K.
X Q; for the illuminant aud for the albedo, respectively, and the sum is taken over
Shodi o
"W repeated indices.
B N : . .
e To simplify further analysis. we impose the conditions that the p' = ¢

s s

&

and that the p'(X) are orthogonal with respect to the a” (). This orthogonal-

L 'l "
AR

-

ity is insured if, for example, the p'(X) do not overlap with respect to A, In the

!
!1
'

-

simplest case, the basis functions may be aonochiromat = p' A) = §( .=\, .

L

L)
L)
)
L)
L%
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:&t} Substituting A1.2 into Al.1 then yields:

s’"(:z:) = logze"'(f)r"‘(‘r)/d/\a”(,\)pi(/\)pi(/\) (Al.4)

If we define the matrix TY = [ d\a”(A\)p'(A\)p'(}), where v = 1,..4

and: = 1,...N, we obtain

antilog [sl"(r)] = ZTuie'i(r)rli(x) (A1.9)

If the p*()\) are suitably chosen, T,; is invertible. Then the linear equa-

tions represented in A1.5 yield the following solution:

’

(T,:)"" antilog [s'"(.r)] = i) (A1.6)

& -

s’i(:r) = c"(z)r"(r) (A1.7)

where sli(r) = (T,;) 'antilog [s"’(.r)]. Taking logarithms of A1.7 yields

log s"(r) = log e"(.r) + log 7"'(1‘)

or

sy =)+ i) i=1..... AW (A1.8)

where ~'(r) = log s*(xr) and so on. which is the desired equation. The

extension to the two-dimensional case is clear.

s'(r) 1s a linear combination of the activity of different types of photore-
ceptors. [t is important to note that the index 7 labels not the color channels

m assoctated with the spectral sensitivities of the difforent photoreceptor types
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but new channels which may be similar to the biological color-opponent chan-
nels. There is no a prior: limit on the number of new channels formed by
linear combinations, but efficiency of information transmission would require

1t to be close to the number of photoreceptor types.

Y "-‘_'.‘_\J,‘.*". - . P ‘\

" ‘. ‘-
ﬁ‘aﬁh

373
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Appendix 2

A Regularization Algorithm for Color Computation

2.1 The regularization approach

Consider the equation

y= Az (A2.1)

where A is a known operator. The direct problem is to determine y given z.
The inverse problem is to find z, given y — the function y becomes the “data”
and z the solution. Although the direct problem is usually well-posed, the

inverse problem is often ill-posed.

Standard regularization theories for “solving” ill-posed problems have
been developed by Tikhonov (Tikhonov and Arsenin, 1977) and others. The
basic idea underlying regularization techniques is to restrict the space of
acceptable solutions by choosing the one solution that minimizes an appro-
priate functional. Among the methods that can be employed (see Poggio, et.

al. 1985a), the main one is to find = that mini;vuzes

Az — ylI® + APz (A42.2)

The choice of the norm || - ||, usually quadratic as in Equation A2.2, and of
the linear stabilizing functional || Pz|], is dictated by mathematical considera-
tions, and most importantly, by a physical analysis of the generic constraints
on the problem. The regularization parameter A controls the compromise

between the degree of regularization of the solution and its closeness to the

data.
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2.2 Regularizing the Color Computation ]

Equation A1.8 is impossible to solve in the absence of additional con-
straints: there are twice as many unknowns as equations for each z. Formally,
the problem is ill-posed. Regularization techniques can be used to restrict
the number of allowed solutions for e'(z) and r(z), and thereby reduce the
number of unknowns, by imposing constraints on the imaging process and

the physical properties of the surfaces and the source illuminant.

One constraint that may be used is spatial regularization (for other con-

straints — spectral regularization and the single source assumption — see Hurl-
bert, 2001 and Poggio, 1985b). The spatial reqularization constraint formal-
izes and extends the retinex assumptions that (a) »*(z) is either constant or
changes sharply at boundaries between different materials, and (b) e*(z) is ei-
ther constant or changes more smoothly than ri(z) across space. One retinex
algorithm (Horn, 1974), for example, imposes the strong constraint (in two-
dimensions) that all values of V2s!(x,y) strictly below a fixed threshold are
due to €'(z,y). The regularization assumption requires only that e*(z) vary
less sharply across space than r'(x) and effectively allows the limit on the

spatial variation of e’(z) to be reset for cach scene.

Standard regularization techniques enforce this constraint on Equation
A1.8 by requiring that its solution minimize the following variational princi-

ple:

_ S d . . 42 .-
t 1 1112 112 ; t t
E [s' — (r' + €")] +)\[—dze] + B[G *r +7d-,——12r]’

!

(A2.3)

where G 15 a gaussian filier wity standa:d deviation . Tle first t rm 1 -

quires that the solut on (7' 4 €*) be close to s': the second term enforces the

constraint that the illumination vary smoothly across space; and the third
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L % tc ‘men orces th con: raint that the reflecta :ce vary not 150 smoot! ly across
k)

s] ice.

Minimizing Equation A2.3 demonstrates that the solutions »* and e’

may be obtained by filtering s' through a linear filter. In the Fourier domain

we derive the result:

Y . Aw?
o F(w) = 3
i (14 Be=«7" 4 Byw? + Bw?e~w?7? 4 B~wt)(1 4+ \w?) — 1

3(w).

(A2.4)

~
()
g2

ST

Note that the quadratic variational principle of standard regularization

L,
P Y

cannot enforce the spatial regularization constraint with full generality. A

more general regularization scheme based on Markov random fields, which

X
s
]

leads to standard regularization as a special case, is sketched by Poggio and

staff (1985).
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Appendix 3

Learning a Regularization Algorithm

3.1 Associative Learning of Standard Regularizing Operators

Minimization of the regularization principle A2.2 corresponds to deter-
mining a regularizing operator that acts on the input data y and produces
as an output the regularized solution z. Suppose now that instead of solv-
ing for z, we are given y and its regularized solution z and we want to find
the operator that effects the transformation between them. This appendix
demonstrates that the regularizing operator can be synthesized by associa-
tive learning from a set of examples. The argument consists of two claims,
explored in detail below. The first claim is that the regularizing operator
corresponding to a quadratic variational principle is linear. The second is
that any linear mapping between two vector spaces can be synthesized by

an associative scheme based on the computation of the pseudoinverse of the

data.
3.1.1 Linearity of the regularized solution

To show that vanational principles of the form of Equation A2.2 lead
to a regularized solution that is a linear transformation of the data, we start

with the discrete form of Equation A2.2:

Az = yli? + M|Pz|%, (A3.1)

in which 2z and y are vectors and A and the Tikhonov stabilizer P are ma-

trices, A does not depend on the data, and || - || is 2 norm.

The minimum of this functional will occur at its unique stationary point

z. To find z, we set to zero the gradient with respect to z of Equation

(X.0)

- W YW RN U WY W R W e W w arS m e e T T
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b '::E::j' A3.1. The solution to the resulting Euler-Lagrange equations is the minimum
v o o]
) vctor z:
vy
RS
e
K (ATA+ APTP)z = ATy, (A43.2)
9,0
I It follows that the solution z is a linear transformation of the data y:
R
o)
h) 2z = Ly, (A3.3)
) . -
.“:' where L is the linear regularizing operator. (If the problem were well-posed,
Y.
‘3“ the operator L would equal simply the inverse of A.) It is important to note
Rtk
S that L may depend on the given lattice of data points.
j 3.1.2 Learning a linear mapping
o
.;5 Given that the mapping between a set of input vectors y and their J
o
19 regularized solutions z is linear, how do we solve for it?7 We start by arranging
l'i.l v
;‘ % the sets of vectors in two matrices Y and Z. The p.oblem of synthesizing the
!
% regularizing operator L is then equivalent to “sc’ving” the following equation
" ) for L:
o
2
&-: Z=1L1Y (A3.4)

A general solution to this problem is given by

1
L)
. ‘.1

" -

(I L=2zYy", (A3.5)
T it : A : _
¢ 3 where Yt is the pseudoinverse of Y. This is the solution which is most robust
s . . . . . . .
v _‘2 against errors, if Equation A3.4 admits several solutions and it is the optimal

)

bt . . . .

B solution in the least-squares sense, if no exact solution of Equation A3.4
a:;‘: 3@8 exists. This latter case is the one of interest to us: in order to overconstrain
f:::‘ .

|.45‘

)
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the problem, and so avoid look-up table solutions, we require that the number
of examples (columns of ') be larger than the rank of the matrix L. In this
case, there is no exact solution of Equation A3.4 and the matrix L is chosen

instead to minimize the expression

M =||LY - Z). (A3.6)

L may be computed directly by minimizing A3.6, which yields

L=2zyT(yyT)! (A3.7)

In practice, we compute L using Equation A3.7, hut ficst regularize it
by adding a stabilizing functional to obviate problems »f nu.nerical stability

(Tikhonov and Ars«nin, 1977).

These results show that the standard regularizing operator L (parame-
trized by the lattice of data points) can be synthesized without need of an
explicit variational principle, if a sufficient set of correct input-output pairs is
available to the system. Note that by supplying as examples the physically
correct solutions z, we assume that they are identical to the regularized
solutions z, and enforce hoth regularization and correctness on the linear

operator we obtain.
3.2 Recursive estimation of L

It is of particular import for practical applications that the pseudoinverse
can be computed in an adaptive way by updating it when new data become
available (Albert, 1972). Consider again Equation A3.7. Assume that the

matrix Y consists of n — 1 input vectors and Z of the corresponding correct

outputs. We rewrite Equation A3.7 as
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S
b ‘,j.y)
L,_y:= Zn—ly',j’._l (A3.8)

If another input-output pair y, and z, becomes available. we can compute

L, recursively by

Ln = Ln—l + (311 - Ln—]yn )tIv (~’139)

where

T _ yl (Yo ¥l ,)™!
" 1+ UI(YH—IYnT 1)~1yn

(A43.10)

provided that (Y,,_; ¥, )77 exists \i.e.. that the number of columns in Y is
greater than or equal to the dimension of y). The case in which (Y, -, Y, )™!
does not exist is discussed together with more general results in Albert
(1972). Note that (2, — La-1ya) in the updating Equation A3.9 is the error
beiween the desived cutput and the predicted one. in terins of the current
L The coefficicat t, is the weight of the correction: with the value given
by Equation A3.10 the correction is optimal and cannot be improved by any
iteration without new data. A different value of the coefficient is suboptimal
but may be used to converge to the optimal solt.tion by successive iterations

of Equation A3.10 using the same data.
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. Optimal Linear Estimation,

. . . . I

o Regression and Bayesian Estimation !
S
-N)

.l
. The optimal linear estimation scheme we have described is closely related
"

'_t'. to a special case of Bayesian estimation in which the best linear unbiased

49
W estimator (BLUE) is found. Consider Equation A3.3: the problem is to

construct an operator L that provides the best estimation Ly of z. We assume
o
*: that the vectors y and z arc sample sequences of gaussian stochastic processes

o with, for simplicity, zero mean. Under these conditions the processes are fully
)
specified by their correlation functions
N
’ \ T T
N Elyy'|=Cyy, El[zy’']=C.y (A4.1)

, where E indicates the expected value. The BLUE of z (see Albert, 1972) is,
> given y,
O
N
Bl

L)

" _— C__y(/yu y, (‘442)

-

” C . . .
- which is to be compared with the regression equation

Y
Y’

Ly=2YT(yyYT") 'y. (A4.3)
:

__‘: The quantities ZYT and YY'7 are approximations to C,, and Cyy, re-

| . . o . . SO
spectively, since the quantities are estimated over a finite nuuber of observi-

2

o tions (the training examples). Thus there is a direct relation between BLUEs

P

o and optimal lincar estimation. The learned operator captures the stochastic

"

)

e regularitics of the input and output signils. Note that if thi+ input vector.

) s

::: y are orthonormal. then L = ZY7 and the problem recuces o constructin NS

o

. ]
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Pl
‘:’

27

a simple correlition imemory of the holographie tipe (see Poggio. 1975a.b).

e
&

Under no restrictions on the vectors y. the cortelation matrix ZY 7 may

frffz‘.‘t A

still be considered as a low-order approximation to the optimal operator (sce

Kohonen, 1977).
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